Heriot-Watt University logo

ROS Theses Repository

Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
Browse ROS
  1. Home
  2. Browse by Author

Browsing by Author "Guzniczak, Ewa"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Developing a label-free microfluidic strategy for downstream processing of stem cell-derived red blood cells
    (Heriot-Watt University, 2019-08) Guzniczak, Ewa; Bridle, Doctor Helen; Willoughby, Professor Nick
    Stem cell-originated therapeutic products, such as in vitro manufactured red blood cells (mRBC), offer a novel route to treating disease by administration of a viable somatic cells that have been selected and manipulated outside the body. Cell-based therapeutics are different to traditional biopharmaceutical products and that presents a challenge of developing robust and economically feasible manufacturing processes, especially in sample purification. To address this challenge, I investigated label-free separation methods based on cell endogenous properties such as size and deformability as sorting parameters. In this study the mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were characterised to identifying the best route for mRBC purification. For the first time it has been demonstrated how deformability-induced lift force affects and contributes to particles separation in spiral microchannels. These findings were translated and incorporated into a new route for high-throughput (processing millions of cells /min and mls of medium/ min) continuous purification strategy for separating mRBC from contaminant by-products (purity >99%). This work is anticipated to bring the benefits of mRBC to a wide range of patients by enabling their manufacture as a reliable, safe and controlled supply of red blood cells for transfusion.
  • Thumbnail Image
    Item
    Developing a label-free microfluidic strategy for downstream processing of stem cell-derived red blood cells
    (Heriot-Watt University, 2019-08) Guzniczak, Ewa; Bridle, Doctor Helen; Willoughby, Professor Nick
    Stem cell-originated therapeutic products, such as in vitro manufactured red blood cells (mRBC), offer a novel route to treating disease by administration of a viable somatic cells that have been selected and manipulated outside the body. Cell-based therapeutics are different to traditional biopharmaceutical products and that presents a challenge of developing robust and economically feasible manufacturing processes, especially in sample purification. To address this challenge, I investigated label-free separation methods based on cell endogenous properties such as size and deformability as sorting parameters. In this study the mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were characterised to identifying the best route for mRBC purification. For the first time it has been demonstrated how deformability-induced lift force affects and contributes to particles separation in spiral microchannels. These findings were translated and incorporated into a new route for high-throughput (processing millions of cells /min and mls of medium/ min) continuous purification strategy for separating mRBC from contaminant by-products (purity >99%). This work is anticipated to bring the benefits of mRBC to a wide range of patients by enabling their manufacture as a reliable, safe and controlled supply of red blood cells for transfusion.
menu.footer.image.logo

©Heriot-Watt University

Edinburgh, Scotland

+44 131 449 5111

About
Copyright
Accessibility
Policies
Cookies
Feedback

Maintained by the Library

Library Tel: +44 131 451 3577

Library Email: libhelp@hw.ac.uk

ROS Email: open.access@hw.ac.uk

Scottish registered charity number: SC000278